Session 4.3

Mr. Hernandez: josehdz@cs.stanford.edu

Notes to keep in mind

Make sure you have these things in your notes, because I will refer to them with the expectation that you have learned, memorized, or written them down.

1. Solving a system of equations with the substitution method

$$
\left\{\begin{array}{l}
5 x-2 y=8 \\
y=x-1
\end{array} \quad \text { substitute } 5 x-2(x-1)=8 \xrightarrow{\text { solve }} x+2 \text { plug in } \xrightarrow{\text { pl }} y=(2)-1 \xrightarrow{\text { solve }} y=1\right.
$$

2. Solving a system of equations with the elimination method

$$
\left\{\begin{array} { l }
{ 4 x - 7 y = - 1 2 } \\
{ - 3 x + 6 y = 9 }
\end{array} \quad \xrightarrow { \text { multiply } } \left\{\begin{array}{l}
12 x-21 y=-36 \\
-12 x+24 y=36
\end{array} \quad \xrightarrow{\text { add }} 3 y=0 \stackrel{\text { solve }}{\longrightarrow} y=0 \quad \xrightarrow{\text { plug in }}-3 x+6(0)=9 \xrightarrow{\text { solve }} x=-3\right.\right.
$$

3. Solving for x in an absolute value equation, such as $-2|x+3|+8=-10$
(a) Isolate the absolute value: $-2 *|x+3|+8=-10 \Longrightarrow-2 *|x+3|=-18 \Longrightarrow|x+3|=9$
(b) Identify the two possibilities: $|x+3|=|9|=|-9|=9$
(c) Set the "inside" equal to the "inside": $x+3=9$ and $x+3=-9$
(d) Solve for $x: x=6$ and $x=-12$
4. Factoring a polynomial from $x^{2}+b * x+c$ into $(x+u)(x+v)$,
(a) Remember that $b=u+v$ and $c=u * v$
(b) Start by factoring out c, such as $24=1 * 24=2 * 12=3 * 8=4 * 6$
(c) See if any pair of factors add up to equal b
(d) If c is positive, that means u and v are both either positive or negative
(e) If c is negative, one is positive and the other is negative

Main problems

1. Find all points on the following graphs with the specified value of y
(a) $y=\left|\frac{3}{4} x+\frac{3}{8}\right|$ where $y=3$
(c) $y=-\frac{1}{2} *\left|\frac{2}{5} x+4\right|-5$ where $y=-9$
(b) $y=\left|3-\frac{2}{3} x\right|$ where $y=5$
2. For each of the systems of equations, find the (x, y) solution.
(a) $\left\{\begin{array}{l}13 x+20 y=4 \\ y=-x\end{array}\right.$
(b) $\left\{\begin{array}{l}-3 x-14 y=1 \\ y=x+1\end{array}\right.$
(c) $\left\{\begin{array}{l}-13 x+4 y=-5 \\ y=-x+3\end{array}\right.$
(d) $\left\{\begin{array}{l}-4 x+9 y=0 \\ y=4 x-1\end{array}\right.$
(g) $\left\{\begin{array}{l}-8 y-10 x=19 \\ x=-\frac{8}{5} y-2\end{array}\right.$
(j) $\left\{\begin{array}{l}7 x-y=-11 \\ 2 x-3 y=10\end{array}\right.$
(e) $\left\{\begin{array}{l}-2 x-5 y=14 \\ y=-3 x+8\end{array}\right.$
(h) $\left\{\begin{array}{l}-2 x-4 y=-2 \\ -4 x+y=14\end{array}\right.$
(k) $\left\{\begin{array}{l}3 x-8 y=12 \\ -9 x-2 y=17\end{array}\right.$
(f) $\left\{\begin{array}{l}5 y-7 x=4 \\ x=\frac{6}{7} y+5\end{array}\right.$
(i) $\left\{\begin{array}{l}-x+4 y=-6 \\ -2 x+5 y=-11\end{array}\right.$
(l) $\left\{\begin{array}{l}12 x-9 y=-3 \\ 3 y-4 x-9=0\end{array}\right.$
3. Simplify each of the following polynomials
(a) Add $-11 x^{2}-2 x-15$ to $3 x-5$
(d) Multiply/expand $(x-6)^{2}$
(b) Subtract $-10 x^{2}-10 x+1$ from $-4 x^{2}-15 x+7$
(e) Multiply/expand $(x-2)(x-4)$
(c) Subtract $-14 x^{2}+6$ from $-x^{2}-4 x+9$
(f) Multiply/expand $(x-5)(x+6)$
4. Graph each of the following quadratic polynomials. Denote the min/max point and x-intercept(s).
(a) $y=x^{2}$
(e) $y=-x^{2}$
(i) $y=-(x+3)^{2}$
(b) $y=x^{2}+2$
(f) $y=1 / 2 * x^{2}$
(j) $y=2(x+5)^{2}$
(c) $y=x^{2}-6$
(g) $y=(x-4)^{2}$
(k) $y=-(x-5)^{2}-7$
(d) $y=3 x^{2}$
(h) $y=(x+2)^{2}$
(l) $y=(x+3)^{2}+5$
5. In general, what happens if we add c (a constant)?

6 . In general, what happens if we multiply the polynomial by -1 ?
7. In general, what happens if we add c (a constant) inside the quadratic?
8. Factor each of the following, and list the x-intercepts:
(a) $y=x^{2}+6 x+9$
(j) $y=x^{2}-16$
(s) $y=x^{2}-14 x+45$
(b) $y=x^{2}+24 x+144$
(k) $y=3 x^{2}-75$
(c) $y=x^{2}-18 x+81$
(l) $y=4 x^{2}-9$
(t) $y=x^{2}-18 x+17$
(d) $y=x^{2}-10 x+25$
(m) $y=16 x^{2}-36$
(u) $y=x^{2}-3 x-28$
(e) $y=x^{2}-22 x+121$
(n) $y=x^{2}-144 / 9$
(v) $y=x^{2}-8 x-65$
(f) $y=3 x^{2}-12 x+12$
(o) $y=x^{2}-81 / 16$
(w) $y=3 x^{2}+9 x-30$
(g) $y=-2 x^{2}-28 x-98$
(p) $y=x^{2}+13 x+40$
(h) $y=x^{2}-49$
(q) $y=x^{2}+14 x+48$
(x) $y=-2 x^{2}+36 x-34$
(i) $y=x^{2}-121$
(r) $y=x^{2}-2 x-8$
(y) $y=-4 x^{2}+12 x+216$

More problems

1. Work on 2014 ICTM 1A/2A: http://www.ilmathcontest.com/hs/Questions/Reg/R14A.pdf
2. Use the "Noah sheets": http://teachers.edenpr.org/ mkingsbury/mathteam/NoahSheets.pdf
