Session 4.1

Mr. Hernandez: josehdz@cs.stanford.edu

Notes to keep in mind

Make sure you have these things in your notes, because I will refer to them with the expectation that you have learned, memorized, or written them down.

1. Solving a system of equations with the substitution method

$$
\left\{\begin{array}{l}
5 x-2 y=8 \\
y=x-1
\end{array} \quad \text { substitute } 5 x-2(x-1)=8 \xrightarrow{\text { solve }} x=2 \xrightarrow{\text { plug in }} y=(2)-1 \xrightarrow{\text { solve }} y=1\right.
$$

2. Solving a system of equations with the elimination method

$$
\left\{\begin{array} { l }
{ 4 x - 7 y = - 1 2 } \\
{ - 3 x + 6 y = 9 }
\end{array} \quad \xrightarrow { \text { multiply } } \left\{\begin{array}{l}
12 x-21 y=-36 \\
-12 x+24 y=36
\end{array} \quad \xrightarrow{\text { add }} 3 y=0 \stackrel{\text { solve }}{\longrightarrow} y=0 \quad \xrightarrow{\text { plug in }}-3 x+6(0)=9 \xrightarrow{\text { solve }} \underset{x=-3}{ }\right.\right.
$$

3. Characteristics of a polynomial, such as $a x^{2}+b x+c$, or, more generally $a x^{n}+b x^{n-1}+\ldots+z$
(a) The degree of a polynomial is the highest variable exponent, such as 2 or n
(b) The leading coefficient is the coefficient of the variable with the highest degree, such as a
(c) The constant term is the number without a variable next to it, such as c or z

Main problems

1. Find all points on the following graphs with the specified value of y
(a) $y=|x+2|$ where $y=7$
(c) $y=-3 *|x+2|-4$ where $y=-13$
(b) $y=|x-7|$ where $y=5$
(d) $y=3 / 4 *|x-4|+2$ where $y=12$
2. Find the equation for the line passing through both points, then a parallel one, and a perpendicular one:
(a) $(-3,7)$ and $(3,-1)$
(b) $(-2,-5)$ and $(6,1)$
3. For each of the systems of equations, find the (x, y) solution.
(a) $\left\{\begin{array}{l}-x+3 y=11 \\ y=4\end{array}\right.$
(d) $\left\{\begin{array}{l}x-3 y=12 \\ y=-x\end{array}\right.$
(g) $\left\{\begin{array}{l}-8 y-5 x=16 \\ x=-2 y-5\end{array}\right.$
(b) $\left\{\begin{array}{l}8 x-2 y=-7 \\ y=-9\end{array}\right.$
(e) $\left\{\begin{array}{l}-4 x+2 y=11 \\ y=x+3\end{array}\right.$
(h) $\left\{\begin{array}{l}2 x+y=9 \\ 3 x-y=16\end{array}\right.$
(c) $\left\{\begin{array}{l}-3 x+7 y=10 \\ x=-2\end{array}\right.$
(f) $\left\{\begin{array}{l}12 y+7 x=-21 \\ x=3 y+1\end{array}\right.$
(i) $\left\{\begin{array}{l}2 x-y=9 \\ 3 x+4 y=-14\end{array}\right.$
(j) $\left\{\begin{array}{l}12 x-3 y=6 \\ 4 x-y=2\end{array}\right.$
(k) $\left\{\begin{aligned} 3 x-5 y & =23 \\ 5 x+7 y & =0\end{aligned}\right.$
(l) $\left\{\begin{array}{l}-x+3 y=4 \\ -6 y+2 x+8=0\end{array}\right.$
4. Simplify each of the following polynomials
(a) Add $2 x^{2}-4 x+1$ to $-6 x^{2}-7 x-5$
(b) Add $-8 x^{2}+11 x-6$ to $-7 x^{2}-9 x+14$
(c) Subtract $-2 x^{2}-3 x+11$ from $4 x^{2}+7 x-3$
(d) Subtract $5 x^{2}-4 x-7$ from $6 x^{2}-5 x+3$
(e) Multiply/expand $(x+3)^{2}$
(f) Multiply/expand $(x+3)(x+7)$
(g) Multiply/expand $(x-2)(x+5)$
5. Graph each of the following quadratic polynomials. Denote the min/max point and x-intercept(s).
(a) $y=x^{2}$
(e) $y=-x^{2}$
(i) $y=-(x+3)^{2}$
(b) $y=x^{2}+2$
(f) $y=1 / 2 * x^{2}$
(j) $y=2(x+5)^{2}$
(c) $y=x^{2}-6$
(g) $y=(x-4)^{2}$
(k) $y=-(x-5)^{2}-7$
(d) $y=3 x^{2}$
(h) $y=(x+2)^{2}$
(l) $y=(x+3)^{2}+5$
6. In general, what happens if we add c (a constant)?
7. In general, what happens if we multiply the polynomial by -1 ?
8. In general, what happens if we add c (a constant) inside the quadratic?
9. Factor each of the following, and list the x-intercepts:
(a) $y=x^{2}-10 x+25$
(i) $y=x^{2}-16$
(q) $y=x^{2}+4 x-21$
(b) $y=x^{2}+12 x+36$
(j) $y=x^{2}-121$
(r) $y=x^{2}-11 x+28$
(c) $y=x^{2}-16 x+64$
(k) $y=3 x^{2}-27$
(s) $y=x^{2}-5 x-36$
(d) $y=x^{2}-4 x+4$
(l) $y=9 x^{2}-25$
(e) $y=x^{2}+22 x+121$
(m) $y=x^{2}-121 / 16$
(t) $y=x^{2}-12 x-45$
(f) $y=2 x^{2}+16 x+32$
(n) $y=x^{2}+8 x+15$
(u) $y=3 x^{2}+9 x-30$
(g) $y=-4 x^{2}+8 x-4$
(o) $y=x^{2}+7 x+12$
(v) $y=-2 x^{2}+36 x-34$
(h) $y=x^{2}-36$
(p) $y=x^{2}+2 x-15$
(w) $y=-4 x^{2}+12 x+216$

More problems

1. Work on 2014 ICTM 1A/2A: http://www.ilmathcontest.com/hs/Questions/Reg/R14A.pdf
2. Use the "Noah sheets": http://teachers.edenpr.org/ mkingsbury/mathteam/NoahSheets.pdf
