Session 3.2

Mr. Hernandez: josehdz@cs.stanford.edu

Notes to keep in mind

Make sure you have these things in your notes, because I will refer to them with the expectation that you have learned, memorized, or written them down.

1. Two lines are parallel if they have the same slope
2. Points are collinear if they lie on the same line. Note: it is sufficient to check slopes between all the points are equal (think about it!).
3. Two lines are perpendicular if the slope of one is the negative inverse of the other.
(a) Slopes are m_{1} and m_{2} and $m_{1}=-\frac{1}{m_{2}}$
(b) The y-intercepts don't matter - draw it out and see why it makes sense!
4. Characteristics of a polynomial, such as $a x^{2}+b x+c$, or, more generally $a x^{n}+b x^{n-1}+\ldots+z$
(a) The degree of a polynomial is the highest variable exponent, such as 2 or n
(b) The leading coefficient is the coefficient of the variable with the highest degree, such as a
(c) The constant term is the number without a variable next to it, such as c or z

Main problems

1. Find all points on the following graphs with the specified value of y
(a) $y=|x|$ where $y=4$
(c) $y=-|x+3|$ where $y=-11$
(b) $y=|x-3|$ where $y=8$
(d) $y=|x-4|+9$ where $y=15$
2. Find the y-intercept and equation of a line that has:
(a) Slope $3 / 2$ and passes through $(-2,6)$.
(b) Slope $-5 / 2$ and passes through $(4,-8)$.
3. For each line, write two line equations of one that is parallel, and one that is perpendicular
(a) $y=\frac{4}{7} x-12$
(c) $y=\frac{13}{9} x+2$
(b) $y=-5 x+7$
(d) $y=2 . \overline{3} x-3$
4. For each set of three points say whether or not they're on the same line, and prove it.
(a) $(4,9),(-1,11)$, and $(-11,16)$
(b) $(-2,7),(-6,18)$, and $(2,-4)$
5. For each of the systems of equations, find the (x, y) solution with the substitution method
(a) $\left\{\begin{array}{l}-5 x+2 y=9 \\ y=7 x\end{array}\right.$
(b) $\left\{\begin{array}{l}15 x+31 y=-3 \\ x=-y+3\end{array}\right.$
(c) $\left\{\begin{array}{l}10 x-9 y=24 \\ y=x-2\end{array}\right.$
6. For each of the systems of equations, find the (x, y) solution with the elimination method
(a) $\left\{\begin{array}{l}3 x-4 y=8 \\ 18 x-5 y=10\end{array}\right.$
(b) $\left\{\begin{array}{c}6 x-5 y=-32 \\ -7 x+8 y=46\end{array}\right.$
(c) $\left\{\begin{array}{l}-2 x-7 y=30 \\ 7 x+4 y=18\end{array}\right.$
7. For each of the systems of equations, find the (x, y) solution. If there are no or infinitely many solutions, say that too!
(a) $\left\{\begin{array}{l}6 x-3 y=5 \\ y-2 x=8\end{array}\right.$
(c) $\left\{\begin{array}{l}2 x=3 y-1 \\ 6 x-9 y=-3\end{array}\right.$
(e) $\left\{\begin{array}{l}5 x-6 y=-25 \\ 4 x-3 y+20=0\end{array}\right.$
(b) $\left\{\begin{array}{l}-4 x+7 y+5=0 \\ x-3 y=-5\end{array}\right.$
(d) $\left\{\begin{array}{l}y=3 x+8 \\ 12 x-4 y=-32\end{array}\right.$
8. Simplify each of the following polynomials
(a) Add $6 x^{2}-2 x-1$ to $-4 x^{2}+7 x+5$
(b) Subtract $-7 x^{2}+3 x-9$ from $5 x^{2}-6 x-4$
(c) Subtract $-7 x^{2}+3 x-6$ from $3 x^{2}+4 x+4$
(d) Add $-8 x^{2}+11 x-6$ to $-7 x^{2}-9 x+14$
(e) Multiply/expand $(x+4)(x-3)$
(f) Multiply/expand $(x+5)(x+7)$
9. Graph each of the following quadratic polynomials. Denote the min/max point and x-intercept(s).
(a) $y=x^{2}$
(e) $y=-x^{2}$
(h) $y=-(x+4)^{2}$
(b) $y=x^{2}+3$
(f) $y=\frac{1}{2} x^{2}$
(i) $y=2(x+4)^{2}$
(c) $y=x^{2}-4$
(g) $y=(x-3)^{2}$
(j) $y=(x+2)^{2}-5$
(d) $y=2 x^{2}$
(k) $y=-(x-5)^{2}+7$
10. In general, what happens if we add 2 to the constant term? subtract $2 ?$ add c (a constant)?
11. In general, what happens if we multiply the polynomial by -1 ?
12. In general, what happens if we add 2 to x in an equation (inside the quadratic)? subtract 3 ? add c (a constant)?
13. Factor each of the following:
(a) $y=x^{2}-12 x+36$
(d) $y=x^{2}-5 x+6$
(g) $y=2 x^{2}-16 x+30$
(b) $y=x^{2}-22 x+121$
(e) $y=x^{2}-7 x+12$
(h) $y=x^{2}-5 x-14$
(c) $y=x^{2}+8 x+7$
(f) $y=x^{2}+14 x+48$
(i) $y=x^{2}-2 x-48$

More problems

1. Work on: 2013 AMC 10A
2. Use the "Noah sheets" (http://teachers.edenpr.org/ mkingsbury/mathteam/NoahSheets.pdf)
