Session 2.1

Mr. Hernandez: josehdz@cs.stanford.edu

Recap of last week

Make sure you have these things in your notes, because I will refer to them with the expectation that you have learned, memorized, or written them down.

- 1. When solving for x in $13 + \frac{x}{-5} = 8$
 - (a) Combine like terms
 - (b) Do the same operation to both sides
 - (c) Isolate the variable on one side
- 2. Finding points on the line: $y = \frac{2}{3}x 2$
 - (a) Choose a value for x (set x = 3). Ideally, choose an x that makes $\frac{2}{3}x$ an integer (easier to work with).
 - (b) Plug this value in for x (plug x = 3 into $y = \frac{2}{3}x 2$ and get $y = \frac{2}{3}(3) 2$)
 - (c) Solve for the value of y (expand and get $y = \frac{2}{3}(3) 2 = 2 2 = 0$)
 - (d) Plot or write the (x, y) point you found (plot (x, y) = (3, 0))
- 3. Understanding the slope
 - (a) Definition: $slope = \frac{rise}{run} = \frac{y_2 y_1}{x_2 x_1}$
 - (b) Positive slope is up/right movement and negative slope is down/right movement
 - (c) Slope can be any real number, but more easily interpreted as a rational number (fraction)
- 4. Slope-intercept form is y = mx + b
 - (a) m is the slope
 - (b) b is the y-intercept, which is where the line crosses the y-axis

Main problems

1. Solve each of the following for the value of x

(a)
$$-11x + 1 = 13$$

(b) $\frac{3}{4}x + 2 = 6$
(c) $\frac{2}{7}x + 1 = 7(-3 + 5x)$
(d) $\frac{1}{x} - 4 = 3 - \frac{3}{x}$

2. Evaluate each expression with the given value of x

(a)
$$\frac{2}{3}x - 7$$
 where $x = 3$ (b) $-4x + 5$ where $x = 2$

3. Find the (x, y) point on each line for the specified variable value

- (a) $y = -\frac{3}{2}x + 5$ where x = 4(b) $y = \frac{2}{3}x - \frac{1}{7}$ where $x = \frac{3}{7}$ (c) $y = -\frac{3}{2}x + 5$ where y = 7(d) $y = \frac{2}{3}x - \frac{1}{7}$ where $y = \frac{6}{7}$
- 4. Graph each of the following lines, identify their slopes, and label the y-intercept on the graph. Extra: label the x-intercept too (where line crosses x-axis).

(a)
$$y = -2x + 4$$

(b) $y = \frac{3}{2}x - 4$
(c) $y = -\frac{1}{3}x + 1$
(d) $y = -1.2x + 6$

- 5. Denote all possible values of x. Use a number line if you find it more convenient
 - (a) |x| = 4(d) |x+4| = 7(b) $\left|\frac{x}{2}\right| \ge 3$ (e) $|x+3| \le 6$ (c) $|2x| \le 3$ (f) $|x+1| \le -2$
- 6. Find the slope between the two points and then find a third point with integer coordinates. *Extra:* find the equation of the line containing both points.

(a) $(0,3), (2,-1)$	(d) $(-2,0), (2,-2)$
(b) $(-3,3), (3,1)$	(e) $(-2,5), (2,-1)$
(c) $(-3, -2), (-2, 2)$	(f) $(0, -3), (2, 0)$

More problems

1. Graph the following and indicate the peak/trough (corner)

(a)	y = x	(e)	y = x+2
(b)	y = 3x	(f)	y = - x + 2
(c)	y = - 2x	(g)	y = x - 4 + 1
(d)	y = x + 1	(h)	y = x+2 + 2

- 2. In general, what happens if we add 3 to an equation? subtract 3? add c (a constant)?
- 3. In general, what happens if we multiply the equation by -1?
- 4. In general, what happens if we add 3 to x in an equation? subtract 3? add c (a constant)?