## Session 2.1

Mr. Hernandez: josehdz@cs.stanford.edu

## Recap of last week

Make sure you have these things in your notes, because I will refer to them with the expectation that you have learned, memorized, or written them down.

1. When solving for $x$ in $13+\frac{x}{-5}=8$
(a) Combine like terms
(b) Do the same operation to both sides
(c) Isolate the variable on one side
2. Finding points on the line: $y=\frac{2}{3} x-2$
(a) Choose a value for $x$ (set $x=3$ ). Ideally, choose an $x$ that makes $\frac{2}{3} x$ an integer (easier to work with).
(b) Plug this value in for $x$ (plug $x=3$ into $y=\frac{2}{3} x-2$ and get $y=\frac{2}{3}(3)-2$ )
(c) Solve for the value of $y$ (expand and get $y=\frac{2}{3}(3)-2=2-2=0$ )
(d) Plot or write the $(x, y)$ point you found $(\operatorname{plot}(x, y)=(3,0))$
3. Understanding the slope
(a) Definition: slope $=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
(b) Positive slope is up/right movement and negative slope is down/right movement
(c) Slope can be any real number, but more easily interpreted as a rational number (fraction)
4. Slope-intercept form is $y=m x+b$
(a) $m$ is the slope
(b) $b$ is the $y$-intercept, which is where the line crosses the $y$-axis

## Main problems

1. Solve each of the following for the value of $x$
(a) $-11 x+1=13$
(c) $\frac{2}{7} x+1=7(-3+5 x)$
(b) $\frac{3}{4} x+2=6$
(d) $\frac{1}{x}-4=3-\frac{3}{x}$
2. Evaluate each expression with the given value of $x$
(a) $\frac{2}{3} x-7$ where $x=3$
(b) $-4 x+5$ where $x=2$
3. Find the $(x, y)$ point on each line for the specified variable value
(a) $y=-\frac{3}{2} x+5$ where $x=4$
(c) $y=-\frac{3}{2} x+5$ where $y=7$
(b) $y=\frac{2}{3} x-\frac{1}{7}$ where $x=\frac{3}{7}$
(d) $y=\frac{2}{3} x-\frac{1}{7}$ where $y=\frac{6}{7}$
4. Graph each of the following lines, identify their slopes, and label the $y$-intercept on the graph. Extra: label the $x$-intercept too (where line crosses $x$-axis).
(a) $y=-2 x+4$
(c) $y=-\frac{1}{3} x+1$
(b) $y=\frac{3}{2} x-4$
(d) $y=-1.2 x+6$
5. Denote all possible values of $x$. Use a number line if you find it more convenient
(a) $|x|=4$
(d) $|x+4|=7$
(b) $\left|\frac{x}{2}\right| \geq 3$
(e) $|x+3| \leq 6$
(c) $|2 x| \leq 3$
(f) $|x+1| \leq-2$
6. Find the slope between the two points and then find a third point with integer coordinates. Extra: find the equation of the line containing both points.
(a) $(0,3),(2,-1)$
(d) $(-2,0),(2,-2)$
(b) $(-3,3),(3,1)$
(e) $(-2,5),(2,-1)$
(c) $(-3,-2),(-2,2)$
(f) $(0,-3),(2,0)$

## More problems

1. Graph the following and indicate the peak/trough (corner)
(a) $y=|x|$
(e) $y=|x+2|$
(b) $y=|3 x|$
(f) $y=-|x+2|$
(c) $y=-|2 x|$
(g) $y=|x-4|+1$
(d) $y=|x|+1$
(h) $y=|x+2|+2$
2. In general, what happens if we add 3 to an equation? subtract 3 ? add $c$ (a constant)?
3. In general, what happens if we multiply the equation by -1 ?
4. In general, what happens if we add 3 to $x$ in an equation? subtract 3 ? add $c$ (a constant)?
