Session 1.1: Where are you in math?

Mr. Jose Hernandez: josehdz@cs.stanford.edu
July 6, 2017

Solutions

1. $x \geq 64$ or must score at least a 64 on the exam
2. $x=-\frac{9}{13}$
3. Given the line $y=-2 x+3$
(a) slope is -2
(b) y-intercept is $(0,3)$ and some integer points are $(-1,5),(1,1),(2,-1),(3,-3)$
(c)

4. slope is $-\frac{1}{3}$ and line is $y=-\frac{1}{3} x+9$
5. $x \in[-2,6]$ or $-2 \leq x \leq 6$ or number line
6. Graph $y=|x-4|-1$

7. Plot each of these equations on the same graph. Extra: find the (x, y) point that satisfies both equations.

$$
\left\{\begin{array}{l}
4 x+y=8 \\
5 x+2 y=13
\end{array}\right.
$$

Intersect at $(1,4)$
8. 9 games scheduled
9. For each of the following functions, factor them into linear terms, which means they look like $(x-a)(x-b)$ or $(x-a)^{2}(x-b)$ or $(x-a)^{2}+b$ or $\left(x^{2}+a x+b\right)^{2}(x-c)$ or anything similar. Find the (\mathbf{i}) factorization if relevant, (ii) x -intercepts, and (iii) general shape (quick sketch).
(a) $f(x)=x^{2}-25 \longrightarrow(x-5)(x+5)$
(b) $f(x)=x^{2}+25 \longrightarrow(x-5 i)(x+5 i)$
(c) $f(x)=x^{2}-8 x-2 \longrightarrow(x-4)^{2}-18$
(d) $f(x)=8 x^{2}-18 \longrightarrow 2(2 x-3)(2 x+3)$
(e) $f(x)=4 x^{2}-36+24 \longrightarrow 4\left(x^{2}-3\right)$
10. $h=\frac{n(n-1)}{2}$ handshakes in a room with n people

